1. Thermodynamic Considerations

A.
$$G = H - T S$$

B.
$$G = -2.3 RT log K_{eq}$$

C. At 300° K, -2.3 RT ~ -1.4 kcal/mole

D.
$$G = -1.4 \log K_{eq}$$
 (in kcal/mole)

(3)

2. Examples of Equilibria and G

G	R	P	$\mathbf{K_{eq}}$
0	50	50	1.0
-1	15	85	5
-2	4	96	25
-3	0.5	99.5	150
-5	0.1	99.9	4000
-10	~0	~100	2×10^{7}

- 3. Rule of Thumb: $G \sim -5$ kcal/mole is sufficient for "complete" reaction
- 5. Examples of H (Bond Energies)

1.
$$X-Y--> X+Y$$
 G bond energy (4)

- 2. H > 0 if bond is broken
- 3. H < 0 if bond is made

Bond Type	Energy	Bond Type	Energy
C-H	100	C-C	85
N-H	95	C=C	150
O-H	110	C=C	200
O-O	35	C-N	75
C-F	115	C=N	150
C-Cl	80	C=N	215
C=Br	70	C-O	85
C-I	50	C=O	180

6. Examples of S (Entropy Changes)

A.
$$CH_4 + Cl_2 --> CH_3Cl + HCl$$

(5)

$$S = +3 \text{ e.u. at } 300^{\circ}\text{K}$$

T S = 0.9 kcal/mole

Rule of Thumb: Same number of molecules of R and P --> $S \sim 0$.

 $\label{eq:comparable} \begin{array}{ll} If \mid H \mid > 20, \, enthalpy \, will \, determine \, K_{eq} \, at \\ ordinary \, temperatures. \, \, Qualifications: \, R \, and \, P \\ must \, be \, similar \, structurally \, (comparable \, reorganizational \, energy) \end{array}$

B.
$$CH_3CH_2CH_2CH=CH_2$$
 (6)

S = -21 e.u. at $300^{\circ}K$ T S = -6.3 kcal/mole Rule of Thumb: The greater the freedom of movement of the atoms of a molecule, the more positive the entropy of the molecule. Reduction of degrees of freedom (i.e., chain into a ring) results in a decrease of entropy.

$$C. 2CH2=CH2 ---> (7)$$

$$S = -44 \text{ e.u. at } 300^{\circ} \text{K}$$
 $T S = -13 \text{ kcal/mole}$

(8)

$$S = -86 \text{ e.u. at } 300^{\circ}\text{K}$$
 $T S = -26 \text{ kcal/mole}$

<u>Rule of Thumb</u>: If $\mid H \mid > 20$ kcal/mole, enthalpy will dominate K_{eq} unless there are two or three more molecules on one side of an equilibrium.

D. Kinetic Considerations

By Analogy:
$$G = H - T S$$
 (9)
 $DG = -2.3 RT LOG KEQ$ (10)

$$Rate = \frac{dR}{dt} = \frac{dP}{dt} = k K_{eq} [R[$$
 (11)

Rate =
$$k[R] 10 - G = at 300^{\circ}K$$
 (12)

E. Examples of Rates and G ($k = 10^{13} \text{ sec}^{-1}$; R = 1 M; $T = 300^{\circ} \text{K}$

\mathbf{G}	Rate (sec-1)	$t_{1/2}$ (sec)
0	10^{13}	10 ⁻¹³
1	10^{12}	10 ⁻¹²
5	10^{10}	10
10	10^6	10^{-6}
14	10^3	10 ⁻³
20	10-1	10

25 10⁻⁵ 1700 min. 30 10⁻⁸ 50,000 (hours)

<u>Rule of Thumb:</u> G \sim 25 kcal/mole: reaction "goes" near 300°K